网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
04-02【Albrecht Klemm】管楼1418 吴文俊数学重点实验室数学物理系列报告之2024-10

题目: Symplectic Invariants on Calabi-Yau 3 folds, Modularity and Stability

报告人:Albrecht Klemm,波恩大学

时间:2024年4月2日上午10:00-11:00

地点:管理科研楼1418教室

摘要: We discuss techniques to calculate symplectic invariants on CY 3-folds $M$, namely Gromov-Witten (GW) invariants, Pandharipande-Thomas (PT) invariants, and Donaldson-Thomas (DT)  invariants. Physically the latter are closely related to BPS brane bound states in type IIA string compactifications on $M$.  We focus on the rank $r_{\bar 6}=1$  DT invariants  that count $\bar D6-D2-D0$ brane bound states related to PT- and  high genus GW invariants, which are calculable by mirror symmetry and topological string B-model methods modulo certain boundary conditions, and the rank zero DT invariants that count rank $r_4=1$   $D4-D2-D0$ brane bound states. It has been conjectured  by Maldacena, Strominger, Witten and  Yin that  the latter are governed by an index that has modularity properties to due $S-$ duality in string theory and extends to a mock modularity index of higher depth for $r_4>1$. Again the modularity allows to fix the at least the $r_4=1$ index up to boundary conditions fixing their polar terms.  Using Wall crossing formulas obtained by Feyzbakhsh certain PT invariants  close to the Castelnuovo bound can be related to the $r_4=1,2$  $D4-D2-D0$ invariants. This provides further boundary conditions for topological string B-model approaches as well as for the $D4-D2-D0$ brane indices.  The approach allows to prove the Castenouvo bound and  calculate the  $r_{\bar 6}=1$  DT- invariants or the GW invariants to higher genus than hitherto possible.


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供