网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
11-15【姜铁锋】管理楼1418 吴文俊数学重点实验室随机分析系列报告

报告题目:Asymptotic Distributions of Largest Pearson Correlation Coefficients under Dependent Structures

报告人:姜铁锋    香港中文大学(深圳)

报告时间:2023.11.15(周三 ) 10:00-11:00  

报告地点:管理楼1418

摘要:Given a random sample from a multivariate normal distribution whose covariance matrix is a Toeplitz matrix, we study the largest off-diagonal entry of the sample correlation matrix. Assuming the multivariate normal distribution has the covariance structure of an auto-regressive sequence, we establish a phase transition in the limiting distribution of the largest off-diagonal entry. We show that the limiting distributions are of Gumbel-type (with different parameters) depending on how large or small the parameter of the autoregressive sequence is. In the critical case, we obtain that the limiting distribution is the maximum of two independent random variables of Gumbel distributions. This phase transition establishes the exact threshold at which the auto-regressive covariance structure behaves differently than its counterpart with the covariance matrix equal to the identity. Assuming the covariance matrix is a general Toeplitz matrix, we obtain the limiting distribution of the largest entry under the ultra-high dimensional settings: it is a weighted sum of two independent random variables, one normal and the other following a Gumbel-type law. The counterpart of the non-Gaussian case is also discussed. As an application, we study a high-dimensional covariance testing problem.


 


 


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供