网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
10-24【张 静】管理楼1418 吴文俊数学重点实验室概率统计系列报告

报告题目:Stochastic Differential Games with Random Coefficients and Stochastic Hamilton-Jacobi-Bellman-Isaacs Equations

报告人:张静,复旦大学数学科学学院

报告时间:10月24日 10:00-11:00

报告地点:管理楼1418

摘要:In this work, we study a class of zero-sum two-player stochastic differential games with the controlled stochastic differential equations and the payoff/cost functionals of recursive type. As opposed to the pioneering work by Fleming and  Souganidis [Indiana Univ. Math. J., 38 (1989), pp.~293--314] and the seminal work by Buckdahn and Li [SIAM J. Control Optim., 47 (2008), pp.~444--475], the involved coefficients may be random, going beyond the Markovian framework and leading to the random upper and lower value functions. We first prove the dynamic programming principle for the game, and then under the standard Lipschitz continuity assumptions on the coefficients, the upper and lower value functions are shown to be the viscosity solutions of the upper and the lower  fully nonlinear stochastic Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, respectively.  A stability property of viscosity solutions is also proved. Under certain additional regularity assumptions on the diffusion coefficient, the uniqueness of the viscosity solution is addressed as well.




Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供