网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
02-08【Wang Tian】腾讯会议 吴文俊数学重点实验室代数学系列报告之216

报告题目:Upper bounds for the distribution of Frobenius traces of abelian varieties

报告人:Dr. Wang Tian (Max Planck Institute of Mathematics in Bonn)

时间:2023年2月8日(星期三)上午9:00-10:00

腾讯会议153-916-814,密码 230208

摘要:Let A be an abelian variety of dimension g defined over the rationals. Let t be an arbitrary integer. We denote by $\pi_A(x, t)$ the number of primes up to x, such that the Frobenius trace of A equals to t. The growth of the function $\pi_A(x, t)$ was first studied by Lang and Trotter in 1976 for elliptic curves, and generalized by Cojocaru, Davis, Silverberg, and Stange in 2016 and Chen, Jones, and Serban for higher dimensional abelian varieties. In the talk, I will present the latest upper bound for $\pi_A(x, t)$ under the Generalized Riemann Hypothesis for Dedekind zeta functions. The bound recovers the upper bound for a non-CM elliptic curve and gives the best known result for an abelian variety with $g \geq 2$. This is in joint work with A.C. Cojocaru.


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供