网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
10-22【曹喜望】腾讯会议 吴文俊数学重点实验室代数学系列报告之192

题目:On the existence of completely normal elements with some special properties over finite fields

报告人:曹喜望 教授,南京航空航天大学

时间:2021年10月22日(星期五)14:30---15:30

腾讯会议 ID:561 395 470

会议密码:202110

摘要:An element of F_q^n is said to be completely normal over F_q if it is simultaneously normal over F_q^l for all l dividing n. It is known that for any q and n, there exist the completely normal elements of F_q^n. Recently,Huczynska, Mullen, Panario and Thomson (2013) introduced the concept of k-normal elements, as a generalization of normal elements. For 0≤ k ≤ n, the element \xi of F_q^n is said to be a k-normal element if all the conjugates of  \xi span a vector space of dimension n-k over F_q. In this talk, we first give a sufficient condition for the existence of a completely normal element  of F_q^n over Fq such that \xi^q-\xi is primitive 1-normal. We also provide some bounds for the number of completely normal elements of F_q^n over F_q. Subsequently, using the obtained results we prove that if n is odd and q -1\geq  n\geq  7, or n is even and q -1 \geq n\geq  8, then there exists a completely normal element  of F_q^n over F_q such that \xi^q-\xi is primitive 1-normal. This is a joint work with Hanglong Zhang.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供