题目: Symplectic_Parabolicity_and_L^2 Symplectic_Harmonic Forms
报告人:谈强,江苏大学
时间:2021年5月9日 (星期日)上午10:00-11:00
腾讯会议 ID:63789593,密码:24680
摘要:In this talk, we consider the symplectic cohomologies and symplectic harmonic forms which introduced by Tseng and Yau. Based on this, we get if $(M^{2n},\omega)$ is a compact symplectic parabolic manifold which satisfies the hard Lefschetz property, then its Euler number satisfies the inequality $(-1)^n\chi(M)\geq 0$. This work joint with T.Huang, H.Y. Wang and J.R.Zhou.