报告题目:Improved Bound on Vertex Degree Version of Erd\H{o}s Matching Conjecture
报告人:鲁红亮 (西安交通大学 教授)
报告时间:4月15号下午 4:00--4:45
地点:管理楼1418
报告摘要:For a $k$-uniform hypergraph $H$, let $\delta_1(H)$ denote the minimum vertex degree of $H$, and $\nu(H)$ denote the size of a maximum matching in $H$. In this paper, we show that for sufficiently large integer $n$ and integers $k\geq 3$ and $m\ge 1$, if $H$ is a $k$-graph with $|V(H)|=n\geq 2mk$ and $\delta_1(H)>{{n-1}\choose {k-1}}-{{n-m}\choose {k-1}},$ then $\nu(H)\geq m$. This improves upon an earlier result of Bollob\'{a}s, Daykin and Erd\H{o}s (1976) for the range $n> 2k^3(m+1)$.