网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
12-11【潘锦钊】腾讯会议 吴文俊数学重点实验室代数学系列报告之176

题目:Toric periods and non-tiling numbers

报告人:潘锦钊,北京雁栖湖应用数学研究院

时间:2020年12月11日(星期五)14:30-15:30

https://meeting.tencent.com/s/6jDAr9D35M9N 

腾讯会议:160 799 281

摘要:This is a joint work with Ye Tian.A positive integer n is called a tiling number if the equilateral triangle can be dissected into nk^2 congruent triangles for some positive integer k. Let n>3 be a square-free integer. Assume n is congruent to 7 mod 24 whose prime factors are congruent to 1 mod 3, or n is congruent to 3 mod 24. Also assume that Q(\sqrt{-n}) has no ideal classes of order 4. Then we show that n is not a tiling number and the 2-part of BSD conjecture hold for corresponding elliptic curves. As a corollary, non-tiling numbers have positive density. In this talk I will introduce its relations to toric periods, the idea of proof and some further topics.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供