网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
07-24【上官冲】 Zoom-吴文俊数学重点实验室组合图论系列讲座之154

题目:Combinatorial list-decoding of Reed-Solomon codes beyond the Johnson radius

报告人:Chong Shangguan (Tel aviv university)

时间:9:00-10:00,7月24日 星期五

腾讯会议ID: 777 695 6738

摘要:

List-decoding of Reed-Solomon (RS) codes beyond the so-called Johnson radius has been one of the main open questions in coding theory since the work of Guruswami and Sudan. It is now known by the work of Rudra and Wootters, using techniques from high dimensional probability, that over large enough alphabets there exist RS codes with vanishing rates that are list-decodable beyond this radius. 

In this talk, we take a more combinatorial approach which allows us to determine the precise relation (up to the exact constant) between the decoding radius and the list size. We prove a generalized Singleton bound for a given list size, and show that the bound is tight for list size $L=2,3$. As a by-product we show that most RS codes with a rate of at least $1/9$ are list-decodable well-beyond the Johnson radius. We also give the first explicit construction of such RS codes.

The main tool used in the proof is the polynomial method that captures a new type of linear dependency between codewords of a code that are contained in a small Hamming ball.

Joint work with Itzhak (Zachi) Tamo

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供