网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
01-08【孟国武】五教5206 吴文俊数学重点实验室数学物理系列报告之2019-19

题目:Coadjoint orbits of Sternberg type and their geometric quantization

报告人:孟国武,香港科技大学

时间:1月8日(周三)15:00-16:00

地点:东区第五教学楼5206教室

摘要:Let $k\ge 1$ be an integer and $\mu$ be the half of a {\it nonzero} integer. The following statements hold for the elliptic co-adjoint orbit of the real Lie algebra $\mathfrak{so}(2, 2k+2)$ that corresponds to the dominant weight $(\underbrace{|\mu|, \ldots, |\mu|}_{k+1}, \mu)$.

1. This orbit is diffeomorphic to $\mathrm{SO}_0(2, 2k+2)/\mathrm{U}(1, k+1)$. As a result, it is pre-quantizable.

2. This orbit is the total space of a fiber bundle with base space being the total cotangent space of the punctured euclidean space of dimension $2k+1$ and the fiber being diffeomorphic to $\mathrm{SO}(2n)/\mathrm{U}(n)$. As a result, it admits a canonical polarization.

3. The geometric quantization of this orbit with its canonical polarization yields the Hilbert of square integrable sections of a Hermitian vector bundle over the punctured Euclidean space in dimension $2k+1$; moreover, this Hilbert space provides a geometric realization for the unitary highest weight $\frak{so}(2, 2k+2)$-module with highest weight \[(-k-|\mu|, \underbrace{ |\mu|, \ldots, |\mu|}_k, \mu).\]

The above results in Lie theory is obtained from the study of magnetized Kepler models in dimension $2k+1$. 

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供