网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
01-03【黄治中】五教5306 吴文俊数学重点实验室代数学系列报告之164

报告题目:Arithmetic purity: strong approximation and counting integral points on homogeneous spaces

报告人:黄治中,德国汉诺威大学

时间:2020年1月3日(周五)15:15-16:15

地点:第五教学楼5306教室

摘要: We report recent progress on a joint project with Yang Cao. If an algebraic variety over a number field verifies strong approximation off a finite set of places, it has been first conjectured by Wittenberg that this property is maintained under the removal of any subvariety of codimension two. If this is the case, then we say that the variety satisfies arithmetic purity. A closely related question is the density of integral points whose multivariable polynomial values have no common gcd's. We confirm the arithmetic purity for semi-simple simply connected k-simple isotropic linear algebraic groups, and for affine quadratic hypersurfaces, using different methods. They show how the fibration method for rational points and various sieve methods (e.g. affine almost prime linear sieve, Ekedahl’s geometric sieve, Iwaniec’s half-dimensional sieve) match together.

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供