网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
12-23【郇 真】五教5305 吴文俊数学重点实验室代数学系列报告之159

报告题目:Level structures and Morava E-theories

报告人:郇真,华中科技大学 

时间:2019年12月23日(周一)16:00-17:00

地点:东区第五教学楼5305教室 

摘要: It is a historical problem how elliptic cohomology can classify the geometric structures on the corresponding elliptic curve. Strickland proved that the Morava E-theory of the symmetric group modulo a certain transfer ideal classifies the power subgroups of its formal group. Stapleton proved this result for generalized Morava E-theory via transchromatic character theory. And Huan proved that the subgroups of the Tate curve can be classified in the same way using quasi-elliptic cohomology. In this talk we show Strickland's theorem is also true for the classification of the level structures of generalized Morava E-theory via Hopkins-Kuhn-Ravenel character theory. This result gives further indications that Strickland's result holds for elliptic cohomology theories. This is joint work with Nathaniel Stapleton. 

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供