网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
10-22【李落清】管楼1418 吴文俊数学重点实验室分析系列报告

Title:Learning and Identifying

 Speaker:李落清教授 (湖北大学)

 Time:2019年10月22日      下午 16:00-17:00

 Room:东区管理科研楼  数学科学学院1418室

Abstract:In this talk we will introduce a learning theory approach to the topic of estimating transfer functions in system identification. A frequency domain identification problem is formulated as an atomic norm regularization scheme in a random design framework of learning theory. Such a formulation makes it possible to obtain sparsity and provide finite sample estimates for learning the transfer function in a learning theory framework. Error analysis is done for the learning algorithm by applying a local polynomial reproduction formula, concentration inequalities and iteration techniques. The convergence rate obtained here is the best in the literature. It is hoped that the learning theory approach to the frequency domain identification problem would bring new ideas and lead to more interactions among the areas of system identification, learning theory and frequency analysis.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供