网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室组合图论系列讲座之142【Willem Haemers】

Title:Which graph properties are characterized by the spectrum?

Speaker:Willem Haemers(Tilburg University of Economics and Management, Holland)

Time:2019年8月26号     下午:4:00-5:00

Room:东区管理科研楼1218

Abstract:Spectral graph theory deals with the relation between the structure of a graph and the eigenvalues (spectrum) of an associated matrix, such as the adjacency matrix A and the Laplacian matrix L. Many results in spectral graph theory give necessary condition for certain graph properties in terms of the spectrum of A or L. Typical examples are spectral bounds for characteristic numbers of a graph, such as the independence number, the chromatic number, and the isoperimetric number. Another type of relations are characterization. These are conditions in terms of the spectrum of A or L, which arc necessary and sufficient for certain graph properties. Two famous examples are: (i) a graph is bipartite if and only if the spectrum of A is invariant under multiplication by 1, and(ii) the number of connected components of a graph is equal to the multiplicity of the eigenvalue 0 of L. In this talk we will survey graph properties that admit such a special characterization.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供