网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室组合图论系列讲座之135【刘西之】

报告题目:Feasible Region for Hypergraphs

报告人:刘西之 (Department of Mathematics, Statistic and Computer Science,University of Illinois at Chicago)

时间:6月18日(周二)下午 3:00-4:00

地点:1208

摘要:Fix $r\ge 3$. Let $\mathcal{F}$ be a family of $r$-graphs. An $r$-graph $\mathcal{H}$ is $\mathcal{F}$-free if it does not contain any $r$-graph in $\mathcal{F}$ as a subgraph. We define the \textbf{feasible region} $\Omega(\mathcal{F})$ of $\mathcal{F}$ as \[\Omega(\mathcal{F}) = \left\{\left(\lim_{n\to \infty}\frac{|\partial \mathcal{H}|}{\binom{n}{r-1}}, \lim_{n\to \infty}\frac{|\mathcal{H}|}{\binom{n}{r-1}} \right): \text{$\mathcal{H}$ is an $n$-vertex $\mathcal{F}$-free $r$-graph} \right\}\].

The classical Tur\'{a}n problem studies the value $\lim_{n\to \infty}\frac{ex(n,\mathcal{F})}{\binom{n}{r-1}}$, which in our language is equivalent to the maximum value of the projection of $\Omega(F)$ on the $y$-axis. On the other hand, if we let $\mathcal{F}= \emptyset$, then the study of the boundary of $\Omega(\emptyset)$ is equivalent to the celebrated Kruskal-Katona Shadow Theorem.

In this talk, I will first present some general results about $\Omega(\mathcal{F})$.Then, several examples of $\Omega(\mathcal{F})$ will be given. In the end, I will introduce you some related open problems. This is joint work with Dhruv Mubayi.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供