网站首页  |  实验室概况  |  研究团队  |  新闻中心  |  学术交流  |  学术报告  |  实验室年报  |  联系我们

 
 
  当前位置:首页 -> 学术报告
04-26【黄佳习】五教5407 吴文俊数学重点实验室微分方程系列报告之6

题目:Local Well-posedness of Skew Mean Curvature Flow for Small Data in d≥4 Dimensions


报告人:黄佳习 (北京大学)


时间:4月26日周一上午10:50-11:50


地点:五教5407


摘要:The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in Rd+2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrodinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrodinger Map equation. In this talk, we prove small data local well-posedness in low-regularity Sobolev spaces for skew mean curvature flow in dimension d≥4. This is based on joint work with Daniel Tataru. 

中国科学院吴文俊数学重点实验室