网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
03-22【何奕昀】五教5205 五教5107 吴文俊数学重点实验室组合图论系列报告

报告题目:Differentially private synthetic data

报告人:何奕昀,加州大学尔湾分校 (University of California, Irvine)

报告时间:3月22日(星期五),2:30-3:30

报告地点:五教5205

摘要:We present a highly effective algorithmic approach, PMM, for generating \epsilon-differentially private synthetic data in a bounded metric space with near-optimal utility guarantees under the 1-Wasserstein distance. In particular, for a dataset in the hypercube [0,1]^d, our algorithm generates synthetic dataset such that the expected 1-Wasserstein distance between the empirical measure of true and synthetic dataset is O(n^{-1/d}) for d>1. Our accuracy guarantee is optimal up to a constant factor for d>1, and up to a logarithmic factor for d=1. Also, PMM is time-efficient with a fast running time of O(\epsilon d n). Derived from PMM algorithm, more variations of synthetic data publishing problems can be studied under different settings.


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供