网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室数学物理系列报告之2019-3【王宏玉】

报告题目: On non-elliptically symplectic manifolds 

报告人:扬州大学 王宏玉教授

时间:4月18号,下午14:00—15:00

地点:管研楼数学学院1318教室

摘要:Let M be a closed symplectic manifold of dimension 2n with non-ellipticity. We can define an almost Kähler structure on M by using the given symplectic form. Using Darboux coordinate charts, we deform the given almost Kähler structure on the universal covering of M to obtain a Lipschitz Kähler structure on the universal covering of M which is homotopy equivalent to the given almost Kähler structure. Analogous to Teleman's L2-Hodge decomposition on PL manifolds or Lipschitz Riemannian manifolds, we give a L2-Hodge decomposition theorem on the universal covering of M with respect to the Lipschitz Kähler metric. Using an argument of Gromov, we give a vanishing theorem for L2 harmonic p-forms, p≠n (resp. a non-vanishing theorem for L2 harmonic n-forms) on the universal covering of M, then its signed Euler characteristic satisfies (−1)nχ(M)≥0 (resp. (−1)nχ(M)>0).As an application, we show that the Chern-Hopf conjecture holds true in closed even dimensional Riemannian manifolds with nonpositive curvature(resp. strictly negative curvature), it gives a positive answer to a Yau's problem due to S. S. Chern and H. Hopf.

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供