网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室组合图论系列讲座之129【刘西之】

报告题目:Conditionally Intersecting Families

报告人:刘西之 (Department of Mathematics, Statistic and Computer Science,University of Illinois at Chicago)

时间:1月4日(周五)上午 10:30-11:30

地点:1418

摘要:

Let $k\ge d\ge 2$ be fixed. Let $\mathcal{F}$ be a family of k-sets of [n]. $\mathcal{F}$ is (d,s)-conditionally intersecting if it does not contain d sets whose union is of size at most s and empty intersection. The celebrated Erd\H{o}s-Ko-Rado theorem states that if $n\ge 2k$, then a (2,2k)-conditionally intersecting family $\mathcal{F}$ has size at most $\binom{n-1}{k-1}$. Mubayi conjectured that if $n\ge dk/(d-1)$, then a (d,2k)-conditionally intersecting family $\mathcal{F}$ also has size at most $\binom{n-1}{k-1}$. Lots of efforts were devoted into the study of this conjecture in the recent dacade. In this talk, I will discuss a further sharpen of Mubayi's conjecture. In particular, I will talk about the upper bound for a (d,2k)-conditionally intersecting family $\mathcal{F}$ with matching number at least $\nu$. Our result settles a conjecture of Mommoliti and Britz. This is joint work with Dhruv Mubayi.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供