网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室代数学系列报告之113【Emmanuel LECOUTURIER】

报告题目: Higher Eisenstein elements, higher Eichler formulas and rank of Heck algebras

报告人:Emmanuel LECOUTURIER(巴黎高师)

时间:2017年10月30日(星期一),9:30-11:30

地点: 管理科研楼1318教室

摘要:In his classical work, Mazur considered the Eisenstein ideal I of the Hecke algebar T acting on cusps forms of weight 2 and prime level N.  The compeltion of T at the maximal ideal generated by I and an Eisenstein prime p is a Z_p-algebra of finite rank g_p as a Z_p-module. Mazur asked what can be said about this rank g_p. Merel gave a congruence criterion for  g_p no smaller than 2.

In this talk, we shall give a congruence criterion for g_p no smaller than 3 and a more complicated  criterion for g_p no smaller than 4. We also prove higher Eichler formulas in the talk. The proof of these resuts are based on the theory of higher Eisenstein elements.  We consider several Hecke modules in our work and compute explicitly some higher Eisenstein elements in these modules.

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供