网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室组合图论系列讲座之一百零五【陈敏】

题目:(3, 1)∗ -choosability of planar graphs 

报告人:Min Chen 浙江师范大学

时间:6月22日  11:00-12:00

地点:1518 

摘要: An (L, d) ∗ -coloring is a mapping π that assigns a color π(v) ∈ L(v) to each vertex v ∈ V (G) so that at most d neighbors of v receive color π(v). A graph G is said to be (k, d) ∗ -choosable if it admits an (L, d) ∗ -coloring for every list assignment L with |L(v)| ≥ k for all v ∈ V (G). In this talk, firstly, I will show some known results on improper list coloring of (planar) graphs with some restrictions. Then, I will give a short proof of our recent result which says that every planar graph without adjacent triangles and 6-cycles is (3, 1)∗ -choosable. This partially answers the question proposed by Xu and Zhang that every planar graphs without adjacent triangles is (3, 1)∗ - choosable. This is joint work with Andr′e Raspaud and Weifan Wang. Keyword: Planar graphs; Improper choosability; Cycle

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供