网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室代数学系列报告之八十七【汪正方】

报告题目: Singular Hochschild cohomology and Gerstenhaber algebra

报告人:汪正方博士 巴黎七大

时间:6月2日上午10:00-11:00

地点:管理科研楼1518

摘要:Let A be an associative algebra over a commutative ring k such that A is projective as a k-module. Then the Hochschild cohomology HH^m(A, A) can be viewed as the Hom-space Hom_{D^b(A\otimes_k A^{op})}(A, A[m]) in the bounded derived category D^b(A\otimes_k A^{op}). We replace D^b(A\otimes_k A^{op}) by the singular category D_{sg}(A\otimes_k A^{op}), which is the Verdier quotient of D^b(A\otimes_k A^{op}) by the full subcategory Perf(A\otimes_k A^{op}) consisting of  perfect complexes of A\otimes_k A^{op}-modules and define the singular Hochschild cohomology HH_{sg}^m(A, A) to be the Hom-space Hom_{D_{sg}(A\otimes_k A^{op})}(A, A[m]) for any integer m.

     In this talk, we prove that HH_{sg}^*(A, A) has a Gerstenhaber algebra structure. We provide a prop interpretation for this Gerstenhaber algebra (a joint work with G. Zhou).  We will also give several examples on how to compute HH_{sg}^*(A, A) in the case of radical square zero algebras A.

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供