网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊数学重点实验室组合图论系列讲座之八十一

报告题目:Turan numbers of a family of graphs

报告人:Tao Jiang    Miami University

报告时间:5月20日周五 4:30-5:30

地点:1518

摘要:

Given family L of graphs, the Turan number ex(n,L)  is defined to be the maximum number of edges in an n-vertex graph which does not contain  any member of L as a subgraph. In this talk, we study the Turan number of  the family of the graphs with  average degree at least d and order at most t  (denoted by  F_{d,t}) (d\geq 2). The case d=2 is equivalent tothe well-known girth problem. For ex(n, F_{d,t}), Random graphs give a lower bound on the order \Omega(n^{2-2/d). We give an almost matching upper bound of O(n^{2-2/d+c_{d,t}}) where c_{d,t} goes to 0 for fixed d as t goes to infinity . This partially answers a question of Verstraete.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供