网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
吴文俊实验室分析与几何系列报告【王芝兰】

题目: Tautological integrals on Hilbert schemes of points

报告人:中科院数学所 王芝兰博士

时间:4月22日(周五)上午10:00-11:00

地点:管研楼1518

摘要: It is an interesting fact that many invariants of the Hilbert schemes of points on a projective variety can be determined explicitly by the corresponding invariants of the variety. In a joint work woth Professor Jian Zhou,we extend such results to the (equivariant) Euler characteristics of some naturally defined vector bundles related to the tautological vector bundles on the Hilbert schemes S^{[n]} of points in a projective or quasi-projective surface S. They are related to the Macdonald polynomials. And Using these we can calculate the integrals of some chern classes on the Hilbert schemes of points on surfaces. Similar things can be done for Hilbert schemes of points on curves. In this talk, I will begin with the basic facts on Hilbert schemes. Then I will present some examples of the above generating series and briefly explain our strategy to computing this kind of generating series.

欢迎广大师生参加!

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号中国科学技术大学数学科学学院    邮箱:hzx@ustc.edu.cn    邮编:230026
网站制作与维护:卫来科技 提供